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ABSTRACT

Kalman filtering techniques are applied to a two sensor bearings only passive

target motion analysis problem. An algorithm is developed to simulate tracking long

range maneuvering airborne targets. The target tracking performance of the filter is

evaluated using computer generated noisy bearing measurements. The performance of

the filter is satisfactory given reasonable initial conditions and measurement noise.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Just ification

By
Distribution/

Availability Codes QUAII

Avail and/or2
Dist~ Specijal

3



THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made,
within the time available, to ensure that the programs are free of computational and

logic errors, they cannot be considered validated. Any application of these programs

w ithout additional verification is at the risk of the user.
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1. INTRODUCTION

Air defense of a carrier battle group is becoming significantly more complex due

not only to the increased speed and range of potentially hostile aircraft but also to

more capable enemy targeting systems and greater cruise missile ranges. To reduce the

probability of an aircraft carrier being successfully targeted by an enemy cruise missile

carrying aircraft, it is imperative that fighter intercept be accomplished beyond the

maximum range of the cruise missile. Long range over-the-horizon (OTH) target

detection and tracking are necessary to achieve this goal.

A major obstacle common to all air defense scenarios is the enemy's use of
electronic countermeasures (ECM). Attacking enemy aircraft will undoubtedly employ

jamming as well as other forms of ECM to degrade or deny effective tracking by active

systems. Therefore, the ability to passively track is required in order to successfully

engage attacking aircraft in a dense ECM environment.

One viable approach to this problem is passive Target Motion Analysis (TMA).

The purpose of TMA is to determine the target's position, course and speed through a

series of passive noisy measurements. For the air defense scenario, these passive

measurements may be lines of bearing (LOB) obtained from the enemy aircraft's

jarrmung strobes or from the electromagnetic radiation of the aircraft's long range

targeting radar. (--h s )

Passive bearings only TMA may be performed by one or more sensors. The two

primary considerations in evaluating TMA performance are solution accuracy and

timeliness. Single sensor TMA requires that the observer aircraft perform zig zag

maneuvers to establish a target bearing rate so that the range to the target may be

estimated. One drawback to single sensor TMA is the fact that these maneuvers may

detract from the observer aircraft's primary mission. Also. a reasonable initial cstimate

of Lh target's state (positicu, €uurse aldl speeCj is IIeLcscr. to euNUIe Li1aE tiiO tr.±LhI.I

solution converges in a timely manner, if indeed it converges at all. An inherent

difficultv with bearings only TMA by a single sensor is that the solution accuracy and

timeliness rely quite heavily upon a "good" a priori estimate of target range.

Consequently, in a long range tracking scenario where the range to the target may

exceed several hundred miles, accurate tracking by a single sensor using only bearing

observations is extremely arduous and rather impractical.

9



A practical solution to long range OTH passive tracking is multi-sensor

triangulation. High speed air targets can be accurately tracked by two or more highly

directional sensors that are spaced sufficiently far apart. The primary reason that multi-

sensor tracking is superior to single sensor TMA is that estimates of target range are

continually being generated through triangulation of sensor bearing lines. Multi-sensor

tracking is far less dependent on accurate a priori state estimates than is single sensor
tracking for timely convergence. The major obstacle, however, in using the multi-sensor

triangulation method is a practical one: very close cooperation is required between the

observers in order to achieve an accurate tracking solution. Three ingredients are

required to localize a target: the position of each sensor, the time of the observation,
and the bearing measurement from each sensor. Ideally, all observations would be

performed synchronously. If asynchronous lines of bearing are encountered, then

computer processing is required to interpolate these LOB's to produce "synchronous-

measurements. The observers are, in effect, remote sensors that transmit noisy bearing

data to a central processing platform where the actual target tracking is performed. For

tracking a long range and rapidly closing air target, triangulation provides a

sigrificantly more accura:e and timely tracking solution.

Because each sensor generates its own sequence of noisy bearing observations,

the Kalman filter is ideally suited for determining a target's position and motion. This

thesis investigates the two sensor bearings only tracking problem in a computer

simulation that employs Kalman filtering techniques. The simulation generates the
tareet and observer tracks as well as noisy bearing measurements from each sensor to

the target. The noisy bearings are then processed by the Kalman filter to provide

continual estimates of the target's state. The tracking algorithm is used in several

scenarios to determine the effect various sensor bearing accuracies and initial estimates

have on the filter's performance.

The aim of this research is to examine how well the filter performs in tracking a

non-rnaneuverinj target before investigating the more difficult case of a maneuvering

L rge. T e prubiem geometry iii be presented first, foiowed b> the deveiopment of
the system and measurement models. Relevant equations from Kalman filtering theory

will then be briefly reviewed before the actual tracking algorithm is analyzed in detail.

The results of several simulation runs using various parameters will be examined. Also,

the effect of target maneuvers on filter stability will be assessed. The final chapter will

summarize the results of this research and will present conclusions and

recommendations for further study.

10
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11. PROBLEM DESCRIPTION

A. INTRODUCTION

As the name implies, over-the-horizon detection and tracking means positioning
sensors out near the radar horizon to look over the edge and pass their observations
back to a central data fusion point for analysis. This data fusion point need not be a
surface combatant; it could be a command and control aircraft. The use of an airborne
command and control platform extends the range to which an air target can be
effectively tracked. The basic idea behind OTH tracking is to place the remote sensors

far enough apart so that effective triangulation fixes may be taken but not so far apart
that they are beyond the range at which they can communicate with the central
processing platform. The command and control aircraft should ideally be positioned on
the threat axis between the incoming air attack and the high value unit (HVU) that is
being protected. Figure 2.1 depicts the general geometry of a basic OTH detection and

tracking scenario.

RF-oTZ SeNSeR I \

0 -0 0

HVU C-C A/c ime0 EWEmnY A/C

/ OF NVU

0'
RU~moTr' SEAoW *2/

Figure 2.1 Basic Over-the-Horizon Detection and Tracking Scenario.

In this chapter the geometry of the two sensor TMA problem will be presented
along with a develcpment of the target motion and noise-free measurement equations.

I1



B. PROBLEM GEOMETRY

Consider the target-observer geometry in the two dimensional plane as shown in

N' y
YXX

.€ gure2.2 argt-Oberve Ge m ser 

,ou 2.2 equivaof teco serd s ee t r .

e ~at (xI , 0 and is onFyare 2 2 Toearogeth- sr GelotryYIieissno

Figure 2.2. The target is located at (xT , ) from a defined reference position. The

origin may be defined as either a fixed latitude.longitude coordinate or the position of

a high value unit such as an aircraft carrier (whose position is relatively stationary).

The x and y components of target velocity are denoted as 'T and ;T and are the

Cartesian equivalents of the target's course and speed, CT and VT. Sensor I is located

at (x, I O and is only able to move along the x-axis with velocity i1. Likewise, sensor 2

is located at (0 , ) and is only able to movc along the y-axis with velocity ,.As

hrn Fpe2.2, the beric f-r rr r za1 I ! he !Pr !C' ;q R ? d tha- leirPn -rr

sensor 2 to the target is 02. The ranges to the target from sensors I and 2 are denoted

as rI and r2 respectively, and the range of the target from the origin is denoted RT.

I. Problem Assumptions

The following assumptions are made concerning the problem:

1. The target is initially inbound and remains within the first quadrant.

2. The target maintains a constant speed but is free to change course.

12
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3. Both sensor positions are known precisely.

4. Bearing data from each sensor are continuously observed and are received
synchronously.

5. Bearing noise is zero mean and Gaussian with variances a1
2 and a622 for sensors

1 and 2, respectively.

6. Target turns are modeled as instantaneous (i.e., no turn radius).

7. Target and sensor altitudes have negligible effect at long ranges.
The last assumption is entirely reasonable since the difference between the target's
slant range and two dimensional range is less than a fraction of 1% for ranges
exceeding 300 nautical miles.

2. Practical Geometrical Considerations
Placing the airborne sensors on orthogonal axes is chosen not only because it

simplifies the geometry but also because it provides adequate sensor separation with

which to perform accurate triangulation. Ideally. the most accurate triangulation fix is
formed from the intersection of two perpendicular lines of bearing. Perpendicular

LOB's in real world scenarios, however, are extremely difficult to obtain for a number
of reasons. One reason is that the maximum range and on station time for airborne
sensors are limited. Also, if electromagnetic energy from the target is being used to
obtain LOB's, it is important that both sensors be positioned within the main sector
beam pattern. Figure 2.3 illustrates some of these considerations. In Figure 2.3 (a), it
can be seen that in the attempt to obtain perpendicular LOB's to the target, sensor I is
beyond the radar horizon of the command and control aircraft and is thus unable to

pass any bearing observations. Figure 2.3 (b) shows both sensors lying within the
sector scan limits of the target's surveillance radar. While it is not necessary for both
sensors to be within the main beam simultaneously, both must be able to detect the
beam's presence within a reasonable time period, a factor which depends on the radar's

scan rate.
The scenario where the sensors are positioned on orthogonal axes could easily

be mod:fied to the more general case where the sensors are located on radials that are

separated, say, by 60 degrees. Since the sensors are now closer together, range
estimates to the target would be somewhat degraded. Also, by adding a third sensor on
a radial 120 degrees from the first sensor and 60 degrees from the second would

provide a wider sector coverage as well as improved tracking accuracy.

The simulations that have been run in this thesis involve extreme ranges from
each sensor to the target. It has been assumed throughout that the target and sensor

13
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Figure 2.3 Practical Geometric Considerations.

aircraft are flying at medium to high altitudes so that all observations will meet radar

horizon range constraints. It should be noted, however, that the practical limiting

factors for maximum detection range are the strength and radio frequency (RF) of the

intercepted source signal. Also, bearing accuracies depend on the RF of the signal.

Extreme detection ranges, sometimes between 400 and 500 nautical miles, have been

used to represent a worst case tracking problem; shorter ranges would yield a more

accurate tracking solution.

C. SYSTEM MODEL

As show n in Figure 2.2, lines of bearing from two airborne sensors are used to

deternine the target's state (position, course and speed). Using a Cartesian coordinate

system, a four dimensional state vector, xT, is chosen.

XT[Y?1, (eqn 2.1)

It should be noted that the system model is in no way limited to a Cartesian rcference

frame or state vector; the Cartesian coordinate system was chosen merely for its

mrathematicai simplicity.

r1
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1. Target Maneuvers

Two basic scenarios are addressed in this thesis. The first one involves
tracking a non-maneuvering target and the second involves a maneuvering target. In

both cases the target is assumed to be initially inbound and any target maneuver will
consist of the target changing only its course and maintaining its speed. Figure 2.4
shows the target tracks that %il be examined in subsequent chapters.

rAIN er TAC TAN

ss ~Sao a .as. S1~ L

TURN ItL

IJONm~dRUVlEgtMG C4pJ.f YrUAN "rI Ab UR

Figure 2.4 Representative Target Tracks.

It is assumed that target maneuvers can be modeled by using white random
forcing functions. As shown in Figure 2.5, target maneuvers may be thought of as
acceieration along its course (radial acceleration) and acceleration perpendicular to its

course (turn rate). Let the random variables 6 and 6; denote the target's acceleration
along its course and acceleration perpendicular to its course, respectively. Both S. and

6; denote random changes of the target and are assumed to be independent and zero
mean with variances a2 and 62. Because of the extremely long ranges involved in the
simulations, target maneuvers have been modeled as instantancous changes c, po;tizon
according to the time interval used. That is, the simulation enables the target to turn
90' in two seconds. While it is acknowledged that this kind of turn rate is quite

artificial, it is informative to see what effect such a drastic turn rate has on tracking
performance and stability. The variances used in subsequent scenarios are:

15
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-'*2 (300knots,'sec) 2  (eqn 2.2)

(2 = (45 deg'sec)2  (eqn 2.3)

(opo)

Figure 2.5 Geometry of Target Maneuvers.

a. Equations of Motion

Let T represent the time interval between observations. If k represents the

k observation and tk the discrete time of the kth observation, then T may be

expressed as

T = tk - tk.i (eqn 2.4)

Referring to Figure 2.2 and Figure 2.5, target motion may be described by the

difference equations:

xT(k+ i" xT(k) + T xT(k) + f1(6V, 6 , ki

XT(k+ 1) xT(k) + f2(6v, 69, k)

y--(k+ 1) y-(k) + T yT(k) + f3(6,, 60' k) (eqn 2.5)

LT(k+ L) yT(k) + f4 (Svl 68, k)

16
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The random forcing functions f, through f4 are included to account for random
changes in speed and heading which occur for a moving target. Equation 2.5 may be
written in matrix form as

1 T 0 0 XT(k) T 212 0
0 1 0 0o x k) T 1 k

x(k + 1) 0 0 1 T YT(k) 0 T212 [T(k]) (eqn 2.6)

O 0 0 Y LYT(k)[ O T

or more concisely as

Xk+ I = (Vk Xk + rkWk (eqn 2.7)

where xk is the -4 x I state vector

(Dk is the 4 x 4state transition matrix

wk is the 2 x I vector of random forcing functions

r k is the 4 x 2 state forcing matrix.

The terms of the random forcing function vector wk represent the
accelerations in the x and y directions caused by target maneuvers. The state forcing
matrix rk represents a uniform constant acceleration model of target motion. If the

time interval T between measurements is assumed constant, then 0 k may be replaced
by a constant state transition matrix 4V and rk may be replaced by a constant state

forcing matrix r. Revising Equation 2.7, the linear system model can be expressed as

Xk+I = ) Xk + rwk (eqn 2.8)

D. NOISE-FREE MEASUREMENT EQUATION
As illustrated in Figure 2.2. the positions of sensors I and 2 along with their

respective bearings to the target, 01 and 0, uniquely define the target's position (XT,

The target's position from noise-free bearing observations may be expressed as

= (Y2 Cos 01 - x I sin 01) sin 02
cos(e I + 02) (eqn 2.9)

17



(XI Cos 0 2 -y, sin 0,) sin 01
cos(0 1 + 02) (eqn 2. 10)

The positions and speeds for the airborne sensors may be chosen arbitrarily for

input into the tracking algorithm. Each sensor's position is assumed to be known

precisely for each time interval. The sensors may both head inbound or outbound or

they may go in alternate directions. Care must be exercised in choosing sensor

positions and speeds so as to avoid having lines of bearing that are collinear (each

sensor is pointing at the other). What results in this case is an extremely thin and

elongated error ellipse which momentarily degrades tracking accuracy at the moment

that the lines of bearing are coincident.

It should be noted that using two sensors elimidnates the need for any extraneous

observer maneuvering as is the case for a single sensor. The observer aircraft can

basically fly straight and level and collect more reliable bearings to the target. Also, the

sensor's position is known more precisely since it is not decelerating and accelerating

into and out of turns.

18



111. KALMAN FILTERING

A. INTRODUCTION

The technique of Kalman filtering is ideally suited to the problem of passive

tracking. The following sections briefly describe the theory and results of Kalman

filtering and how it is applied to the long range airborne TMA problem. For a more in-

depth development of the Kalman filter, the reader is referred to [Refs. 1,2].

B. THE KALMAN FILTER

The purpose of the Kalman filter is to keep track of the state of a system

through a sequence of noisy measurements. This is accomplished by recursively

updating an estimate of the state by processing a sequence of noisy observations in

such a manner as to reduce as much as possible the effect of measurement errors.

The Kalman filter is a predictor-corrector type estimator that propagates an

estimate, X, of the target state along with an associated covariance matrix, P, which

reflects the degree of confidence placed in the accuracy of the state estimate. The

Kalman filter is carried out in two alternating stages. First, previous estimates of x

and P are extrapolated one time step ahead based on the assumed system dynarmics;

this is referred to as the Movement Step. These extrapolated values are then used to

compute a set of optimum weights called Kalman gains. The gains are applied to the

prediction and to a new observation in a Measurement Step, which provides an

updated estimate of the state and its covariance. This process is then repeated. [Ref. 31

I. Assumptions

The following assumptions are made:

1. The random forcing function wk is zero mean and uncorrelated with covariance
) Qk'"

2. The measurement noise vk is zero mean and is correlated with covariance Rk.

3. The random forcing function "k and measurement noise vk are uncorrelated.

4. The initial state x is a random variable with known mean "x4 and covariance
P0 -1.

19
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2. Definitions

1. The estimated state vector after k observations is denoted by MIl and the

predicted state vector before the kth observation is represented by Xklk.I*

2. The state estimation error vector rk is defined as the difference between the

estimated state and the true state

A 
(qCk ' Xkk - (eqn 3.1)

and the predicted state estimation vector Ck k-I is defined as the difference between

the predicted state and the true state

£kIk-I M Xkk-l - Xk (eqn 3.2)

3. The covariance of estimation error matrix Pk~k is defined as

Pktk = E{ Ck CkT) (eqn 3.3)

and the predicted covariance of state error matrix Pklk-I is defined as

Pklk-I - E{ .ki Ck TkI } (eqn 3.4)

4. The state excitation covariance matrix is given by

Qk = E{ r ik 1 k T } (eqn 3.5)

5. The Kalman filter is an optimal estimator that minimizes the sum of the

varianccs of the estimation error. i.e..

E{i:l(k) 2} + E(c,(k)2
) + ... + E{cn(k)2 }  (eqn 3.6)

20
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Enter known matrices and a priori estimates:

Ax(01-1)', P(o1-1)' R()-,d

Compute the Kalman gain:

G(k) = P(klk.l)HTt HP(klk.l)H T + R(k) YI

MEASUREMENT STEP
x(kk) = x(kkl) + G(k)( Z(k) - H,*(kk-l) }

P(klk) = I - G(k)n }P(k0kl)

MOVEMENT STEP

X(k + I Ik) 4D 'N k(k +Ilk) (

P(k+ Ilk) P(klk) T  Q(k)

*Compute R(k) and Q(k)

Increment k by I

Figure 3.1 Kalman Filter Algorithm.
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3. Kalman Filter Algorithm

Figure 3.1 summarizes the discrete Kalman filter algorithm. For the particular
TMA problem presented in this thesis, the 2 x 4 measurement matrix Hk and the 4 x 4

state transition matrix 4P are both known, constant matrices and may be represented
by H and 0. An a priori estimate x01.1 of the target's state with an associated initial

error covariance matrix P01-' as well as an initial estimate of the measurement noise

covariance matrix R0 must be input into the filter algorithm. The algorithm computes

the Kalman gain Gk based on these a priori values and then updates the estimate of

the target's state when it receives a measurement. The error covariance matrix is also
updated. Next, the state estimate and its error covariance matrix are projected one time

step ahead based on the assumed system dynamics. The measurement noise covariance
Rk and the state excitation covariance matrix Qk are then computed before k is

incremented by one and the whole process is repeated.

C. FUNCTIONS, MATRICES, AND EQUATIONS

In this section, the Kalman filter algorithm will be applied to the long range
passive airborne tracking problem. A brief derivation of the random forcing function

W k' the state excitation covariance matrix Qk' the measurement equation Zk. and the

measurement noise covariance matrix Rk is given next.

1. Random Forcing Function

Recalling equation (2-6), the two dimensional random forcing function %%k

represents the acceieration in the x and v directions caused by target maneuvers.

" =k + (k vk6 ~
'-l (eqn 3.7)

where v = ' + k2 )112.

Since the random variables S. and 6; were assumed to be zero mean, it

%olUows that the random forcin- function w is also zero mean. The variances of the x

and y accelerations, denoted by a.2 and ay.- respectively, are

(Y2 E J i % --- C VI (eqn 3.S)

y2 2 E a]  x * a (eqn 3.9)

61 V,
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The covariance of the x and y acceleration a,2 is

y E. k .j C + "'6% (eqn 3.10)

Therefore, the random forcing function covariance matrix Qk' is

& 
a

E W wT = (eqn 3.11)
Qk=Ef kwk

where aj. , a.2 , and a,,. are computed at the predicted values of xT and YT"

2. State Excitation Covariance Matrix

The purpose of the state excitation covariance matrix Qk is to account for

model inaccuracies or for a target that has maneuvered. It is basically a *procedure for

masking the effects of modeling errors" [Ref. 2: p. 1631. In effect, the state excitation

covariance matrix increases the size of the predicted covariance of error matrix which

in turn increases the filter gains. As more observations are processed, Qk prevents the

Kalman gains from approaching zero by continually injecting uncertainty into the

predicted state estimate at each iteration. A nonzero Qk slightly degrades the filter's

accuracy when the target is not maneuvering but it helps prevent filter divergence when

the target does maneuver. As stated in equation 3.5. the state excitation covariance

matrix is

Tw" X a 2 TrIrk

Qk Q F T = TAq T' L

Q = r Qk, rT - a %' (eqn 3.12)

SYMMETRIC V d  T

LIL. I

3. Measurement Equation

In this TMA problem, the observations are noisy (x,y) positions. It is the

intersection of noisy lines of bearing that form the noisy (x,y) position of the target
that is input into the Kalman filter algorithm. Because the observations are of the

same form as the state vector, the measurement equation is linear and is expressed as
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zk H xk + vk (eqn 3.13)

where zk is the 2 x I measurement vector

H is the 2 x 4 measurement matrix

vk is the 2 x I measurement noise vector

Xk is the 4 x I state vector.

The equation may be written explicitly as

Xk

S0o 1 0 Yk 2 (eqn 3.14)
.Ykj

The most important part of the measurement equation is an accurate description of the

measurement noise vector vk The measurement noise vector expresses the statistical

nature of the noisy (x,y) position that is derived from the intersection of two noisy lines

of bearing. These bearing measurement errors are assumed to be independent and zero

mean with variances a 2 and 6 2, for sensor 1 and sensor 2 respectively.

It is important to note that the bearing errors between sensors are statistically

uncorrelated; one sensor's bearing accuracy has nothing to do with any other sensor's

bearing accuracy. However. in describing the resulting intersection in Cartesian

coordinates, the noisy x and noisy y positions are correlated. The only case where the

noisy x and noisy y positions are uncorrelated is when the lines of bearing are

perpendicular.

4. Error Ellipses

An intuitive way to visualize the measurement equation is through the concept

of error ellipses. Error ellipses give a geometric picture of the region around a noisy

rosit~on or estimate where the true value is considered to lie. Figure 3.2 shows a

-,ite G~u"c iin proIa: i!i"' dencit " fti -' ,e P' ! red " h,: c,!'r of , !'r, ,

of bearing with independent Gaussian distributions.

As can be seen in Figure 3.2, the lines of bearing intersect at an oblique angle,

for:ning an asymmetric hump. While the bivariate Gaussian probability density

function gives an interesting three dimensional depiction of two normally distributed

bearing errors, it does not provide the information that is really needed, quickly. What
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3950 405
395 X AIS (in NM)

Figure 3.2 Bivariate Gaussian Probability Density Function.

is needed is an accurate picture of the measurement (or estimation) error. This

uncertainty is best expressed geometrically by the error ellipse. The term "error ellipse"

refers to the two dimensional surface of constant probability density. Figure 3.3

presents these error ellipses as contour lines of the bivariate Gaussian probability

density function shown in Figure 3.2.

The various ellipse sizes in Figure 3.3 correspond to different constant

probabilities. The fact that the ellipses are also rotated implies that the uncertainty in

measurement error is indeed correlated with respect to x and y. The actual probabilities

within a specified error ellipse may be computed through lengthy integration of the

bivariatc Gaussian probability density function over :he surfacc of the clipse. Some

computed probabilities of the true value INing within the Ia. 2a, and 3a error ellipscs

are .394, .865, and .989 respectively [Ref. -t: pp. 4-49].

Error ellipses are extremely useful in examining postion error. Matrices

containing the x and y position terms convey anal.tically what error ellipses display

graphically. A 2 x 2 error covariance matrix which contains position components x and

y is able to completely describe an ellipse. The main diagonal terms represent the
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Figure 3.3 Error Ellipses as Contour Lines.

variances of the x and y positions respectively. The off diagonal terms represent the

. degree of x-y coupling and the orientation of the error ellipse in the x-y plane.

". Covariance of Nleasurement Error Matrix

The covariance of measurement error matrix Rk uses the concept of error

eliipses to accurately describe the noisiness and degree of coupling of (x,y)

measurements obtained from intersections of noisy LOB's. The terms of the covanance

of measurement error matrix Rk depend on the standard deviations of bearing error (ri

and a2 of sensors I and 2 as well as the angle at which the lines of bearing intercept.

The covariance of measurement error may be expressed as

in ~ + dt "e 1C0 -19 , ..e -,

' oS(e., ateL) cos(e, e

z 2

L L
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where OI and 02 denote noisy bearing observations from sensors I and 2, respectively.

The subscript k has been intentionally deleted from equation (3-15) only for ease of

notation. At each discrete time interval tk , new values of 01 and 02 are generated with

which to compute the new measurement error covariance matrix, Rk A complete

derivation of equation (3-15) is given in Appendix A for the interested reader.

-'2
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IV. THE ALGORITHM

A. INTRODUCTION
This section discusses the development of the tracking algorithm. The algorithm

is designed to simulate tracking a long range inbound enemy air target by triangulating

noisy bearing observations from two airborne sensors. We want to be able to track a

non-maneuvering target within a one percent range error. For a maneuvering target,

we desire a stable filter response which quickly converges to the target's new state. The

effect of various sensor bearing errors, a priori state estimates and initial error

covariance matrices on filter accuracy and convergence time are investigated. Also, the

effect of target maneuvers on filter stability is analyzed. Basically, the algorithm

performs three functions:

1. The target and sensor tracks are generated.
2. Noisy bearing observations are simulated using a random number generator.

3. The noisy measurements are processed by the Kalman filter algorithm to
generate estimates of the target's state.

B. TARGET TRACK

As mentioned in Chapter 2, three target track scenarios are investigated:

nor.maneuvering. gentle turn. and hard turn. In all three cases the initial target position

is (410 nmi, 430 nmi) with X and Y velocities of -400 knots and -380 knots

rescpectively.

C. GENERAL SIMULATION SCENARIO

The overall purpose of this simulation is to be able to track an inbound enemy
aircraft before it flies within 300 nmi of the high value unit. By using two sensors which

,rC eN Cntiii.y dbie to "peck o'er the norizon, a iong range OTH iignter intercept of

the target aircraft may be accomplished. For all simulation runs, an initial target range

of 600 nmi is chosen. This allows the sensors to passively track for thirty minutes, and

it enables fighter intercept to occur beyond 450 nmi of the HVU, depending on the

fighter's initial position and fuel state. The target aircraft is also assumed to be flying

inbound at approximately 600 knots.

28
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1. Algorithm Flow

The algorithm can be broken down into the following steps:

1. Define the true target track.

2. Define the observer tracks.

3. Enter a priori estimates xoli, POI-11 and R0 . Enter bearing error variances a1 2
and 022.

4. Compute the noise free bearings from each sensor to the target for each time
interval.

5. Compute random sensor bearing errors using computer generated normal
distribution.

6. Add the random bearing errors to the noise free bearings to create noisy
bearing measurements.

7. Compute the noisy (x.y') position that results from the intersection of two noisy
LOB's.

S. Input this noisy (x,y) measurement into the Kalman filter algorithm.

D. TARGET TRACK

As mentioned in Chapter 2, three target track scenarios are investigated:
nonmaneuvering, gentle turn, and hard turn. For all scenarios, the initial target

position is (410 nmi, 430 nmi) with x and y velocities of -400 knots and - 380 knots

respectively. For the scenarios where the target maneuvers, a value is input for the time

that the maneuver is to take place. Also. values for the x and y velocities are input for

Ic seccnd leg of the target track. It should be noted that the turn radius of the target
is no- taken into account in the target track. for at the extreme distances being

investigated, target maneuvers almost appear as point turns.

E. OBSERVER TRACKS

The observer tracks each begin at 295 nri on their respective axis and travel
inbound at 420 knots. These observer tracks were chosen to be inbound to represent a

more realistic. worst case type scenario. Ideally, it is desired to have both obscrvcr

constraints and maximum on-station time for the observer aircraft are important

practical considerations that must be taken into account.

F. INITIALIZATION

In the first series of simulations, different combinations of the initial state
estimate x01._ and the initial error covariance matrix P01-1 are tested. For the first
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simulation, and the one by which the other simulations are compared, the a priori state

estimate is

400 nmi

420 knots

and its associated initial error covariance matrix is

(50nmi) 2  0 0 0

0 (50kts) 2  0 0

0 0 (SOnn.a' 0
0 0 0 (50kts)-

The initial measurement error covariance matrix for the one degree bearing error case

is

= 7nmi)2  (5nri)2

Ro . 1 n in
[Sflmi)2 k(7nmi)]1

G. NOISY BEARING GENERATION
The Box-M.iller mcthod is used to generate normally distributed bearing errors.

Basically, it is a mapping technique that uses an algebraic identity to establish a one to

one relationship between a uniform random variable and a normal random variable.

Two random U(0.1) numbers, U1 and U21are transformed into independent N(0.1)

randorm numbers, N, and N, using the equations

N, = (-2lnU)2 cos 2nU,

2 = (-2lnL 1)1 2 sin 2iU 2
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Figure 4.1 Normally Distributed Beanng Error.

Figure 4.1 presents a histogram showing the normal distribution of the bearing error.

These normally distributed random numbers are then multiplied by the standard

deviation of measurement error for each sensor to produce two independent normally

distributed bearing errors for 01 and 0,
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V. SIMULATION RESULTS

A. INTRODUCTION

The purpose of this chapter is to show through various scenarios the effect of

different initial state estimates and measurement noise levels on the stability, accuracy,

and convergence time of the algorithm. In the folloing pages, fourteen simulations

involving three scenarios are presented. As shown in Figure 2.4, the three scenarios

include a nonmaneuvering target track, a target track withgentle turn, and a track with

a hard turn. The first scenario provides the reference with which other cases may be

compared. Unless otherwise noted, all simulations use a two second time interval

between measurements. Also. all of the simulation results depict the cases of one

degree and five degree sensor bearing errors. It should be pointed out that in order to

isolate the effect of various parameter changes, a single random number seed is used

throughout to represent a specific noise history. There has been no attempt to create

statistics based on ensemble of noise histories due to the extreme computational time

required.

B. TYPES OF GRAPHS

Five graphs are used in all simulations. These include the x and y positional

errors, the x and v velocity errors, and the percent range error. For the case of

positional errors, the updated state estimate of x and y position is subtracted from the

target's true x and N position. Likewise, for the case of velocity errors, the updated

state estimate of velocity is subtracted from the target's true x and y velocity. Range

percent error is computed as

Range Percent Error = I 100Rr

where RT denotes the target's true range from the origin and RT is the updated

estimate of target range using the updated state estimate for the x and ' positions. In

some simulations, the measurement residual error is plotted. The measurement residual

is defi.. d as the difference between the actual noisy measurement and the predicted

state estimate. It may be expressed as the quantity

- Hkkl
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C. SCENARIO I

Scenario 1 consists of ten simulations that demonstrate the effect of various a
priori estimates, measurement noise levels, and time intervals between measurements

on filter performance. In all ten simulations, the target is on constant course and
speed. Figure 5.1 illustrates the target's true track along with noisy measurements.

Note by the scale that only a portion of the first quadrant is depicted. In the first
simulation, the initial difference between the true target state and the initial state
estimate is

10 nm"

- - 20 kt
30nmi

40 kt

and the a priori error covariance matrix is

Io .. o C) 1 0 0

oo

Overall, it can be seen that for the one degree bearing error case, the algorithm

tracks quite well. Referring to Figure 5.1, the x velocity error initially gets worse before

it gets better. It is not until after five minutes have elapsed that the x velocity error is

less than the a priori estimate. As can be seen from Figure 5.1, the tracking accuracy

for the five degree bearing error case is fair. The one degree bearing error case

.:"nliey demonstrates cuick and accurate filter convergence; the fixe degree bearung

case seems to meander almost randomly. The sudden rise for the five degree case seems

to be an anomalous disturbance. The x and y velocity gains are directly related to

bearing accuracy; the higher the accuracy, the greater the gain. For the five degree

bearing error case, the velocity gain never exceeds 0.2.

The following nine cases are basically variations of the first case. Table I lists

the parameters that have been changed for each case.
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TABLE I

SCENARIO PARAMETER CHANGES
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VI. CONCLUSIONS AND RECOMIENDATIONS

A. CONCLUSIONS

Th. purpose of this thesis was to investicate the two sensor bearings only passive

trackn, problem using Kaiman filtering techniques. A computer simulation was

d.ceeoped to generate the target track and the noisy bearing observations from each %

senscr. Filter performance was exceptional for -he nonmaneu'ering target case. With

one degree sensor bearing error and two second measurement intervals, the filter was

aThe to consistently :rack the target to within one quarter of one percent range error in

the first fi e minutes. As was expected. filter accuracy was degraded as bcarn, error

-,as increased. The tracker performed reasonably well for sensor bearing errors as high

as ei-ht degrees.

For the case of a maneuvering target, filter performance was marginal. Filter

convergence to an accuracy attained prior to the target maneuer did not occur. The
use of a state excitation covariance matrix by itself was not sufficient enough to

pr-operly account for target maneuvers. What is needed is a reliable zig detector that

quick!:. recognizes target maneuvers so that the filter gains may be renitialized. The

probiem of detecting target maneuvers is not trivial. At long ranges. error ellipses may

e'tx to forty times larger than the actual distance the target has moved. Sifting

out a bona fide target maneuver from these extremely noisy measurements is qu:tc

d..~c~alt. Determining a target maneuver by attempting to find a pattern in the

measurement residuals is only successful if the time between measurements is greater
t.an :hirty seconds. A drawback to this approach is that filter accurac' is degraded

,.
ecause fewer measurements are being processed.

From the simulation runs it was found that the most influential factors in

de:-.rmaning tracking accurac% and speed of convergence were the sensor bearing

accra:ics and the time between measurements. Factors that contributed to a lesser ,

exten: included the accuracy of the initial state estimate along with its assoc:ated

dceree of confidence and the positions of the sensors. Inaccurate a prior, information

did not degrade the filter's accurac, it only increased the time for convergence. Filter

.. ccurac\ improved as the lines of bearing came closer to being perpendicular.

-1N
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B. RECOMMENDATIONS

This study is by no means complete. Some areas for further study include the

following:

I. Run an entire ensemble of simulations (perhaps 1000 runs) to generate reliable
statistics on the filter s performance.

2. Investicate more fully a method to detect target maneuvers so that adaptive
control techniques may be used to alleviate the problem of filter divergence.

. Examine the utility of using more sensors to cover a comparable sector. Are
more sensors necessarily beneficial?

.I. Perform the simulation using a diierent coordinate system (such as polar
coordinates) and compare the results to those obtained using a Cartesian
model.
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APPENDIX A
DERIVATION OF MEASUREMENT ERROR COVARIANCE MATRIX

In this appendix the measurement error co~ariancc matri\ Rk is derived.
Recaihn the measurement equation from Chapter 3. the measurement noise vector
is assumed to bc Gaussian and zero mean with variance R. That is,

Vk ~ NOR k (A-i)

The purpose of Rk is to statistically describe the noisiness of the x and v measurements

obtained through the intersection of noisy lines of bearing. Basicafly, the 2 b% 2
measurement error covariance matrix describes this noisiness by displaying the variance
and covariance of the noisy x and y measurements in terms of each sensor's bearing
measurement and accuracy. Referring to Figure Al1, the position (XT.YT) represents
a possible true position of the target based on noisy sensor bearing observations, 01
and 0,. The position of the target (XT , Y is a jointly distributed random variable

whose expected value coincides with the intersection of the bearing lines.

Ila , I'

(0,01 S ESat I X

Figure A. I Target Observer Geometry Revisited.
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To develop the relationship between XT and )T' the LOB's from each sensor

may be expressed in the general form for the equation of a line:

X sine, + * ysl, - ,, = 0 (A-2)

cese ~ -= 0(A-3)

The distance from the position (XT, YT) to each sensor line of bearing is denoted by

d and d, for each sensor LOB respectively. From the problem geometry and by using

the equation for the distance between a point and a line. the displacement distances d,

and d, may be expressed as

a 8[x +,;, S. I.n ] (A-5)

Since both sensor bearing errors are assumed to be Gaussian zero mean random

variables with bearing variances cr, and a 2 , it follows that the displacement random

variables d1 and d2 are also zero mean Gaussian with displacement variances c] and

2a2 , respectively. Figure A.2 illustrates the relationship between the displacement

variance and the sensor bearing error variance.

'pp X, X

Figure A.2 Relationship Between Bearing and Displacement Errors.
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In this figure, the bearing error standard deviation for sensor 1, a. is expressed

in degrees or radians whereas the displacement error standard deviation for sensor 1. a,

is expressed in nautical miles. They are related by

C'1f = r1 tan ca1  (A -)

where r1 is the approximate distance from sensor I to the target in nautical miles.

Therefore, the displacement distances d, and d2 are normal random variables that

may be written as

d N(O. a ,")

d2  N(0. c2;) ( 3

Having described the displacement random variables di and d2 from sensor 1 and

sensor 2 lines of bearing, equations A-4 and A-5 may be rewritten as

xr t. - ca- , = x,, , N, (A-9)

xT e. + Ys. -= . + Nt (A-10)

where N, = N(O, CI) and N2 = N(O. a,). Solving equations (A-9) and (A-10) for

XT and YT yields:

%in02Co ,~ O 9 - X, S#hG'M .9 +~JCO6 N~s~Xr :4 ~ ~Cos (, 690 1 a. M%0

S~ s,9. Ce6 a 1*"& .
8  G- N2 s;. 8,

,- c, (ev*e2)

Ior X

(A-12I

A At - I t 1 n e2 C' , - X, s., se-O)
cot(e, teal
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CO A5

and A sin sOSt & 3  8,

Cos(e, *,)

Cos 91 s(,~ 5
St 7 7A8 S ( 8.

Note that since XT and NT are linear combinations of normally distributed random

variables, they mtsL ,Iso be normally distributed. That is,

XT -N( Xra64) (XT3)

N( 164 Gy ) (A-H11)

where AX= A1

6,2 = A2
2 6,12 + A3 

2 a2 A1

and Ay= B1

B ,2 a2 + B 2  
2

Now, the measurement error covariance matrix R may be written as

= V a r ( x T )  Cov(X T , 'NT)

Co<XT, YT) (T

By definition, the covariance of the random variables XT and NT is the expected

value of their product minus the product of their means. That is,

COV(XT, NIT) = EIXT YT) - PU-rAN; .  (A -18)

Substituting equations (A-l i) and (A-12) into the above equation yields

Coy (Xi, Y) =E [(A, - A,. N * As N) (S. . -4J8,N)Vj- AB (A-'
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By noting that Nand N, are zero mean, the expected value of their product is the

Product of their means. That is, EIN IN,] = r- fNIJ E [N,7 = 0. Using this fact.
the covariance between the random variables XT arid V'T is simrp!ified to

COv(XT, YT) A, B, cy -t A3 B3 a;A-o

Substituting equations (A-15), (A-16), and (A-20) into equation (A-17) enables the
measurement error covariance matrix R to be written as

A%2 +A , o.A 3 3Z L 6ivL A,3  A B + 13, ]5
A ~ ~ ~ ' z . sB rj

Lastly, substituting the values for A2 and A3 into the above equation yields the final

expression for the measurement error covariance matrix

ore 191+ We Cosa 8,I Zc i 2 C

C at

6". coildG 4tc_ a1

'V~. ~~ *~- A ?6



APPENDIX B

SIMULATION PROGRAM LISTING

SKALMAN
1" THIS PROGRAM IS A TWO-SENSOR KALMAN FILTER TRACKING ALGORITHM.

ATHE FOLLOWING IS A LIST OF THE PRINCIPAL VARIABLES USED:

-APXHAT ......... A PRIORI STATE ESTIMATE XHAT
A6 BE1,BE2 .......... NORMA-LLY DISTRIBUTED BEARING ERRORS

_ ;DT............... TIME STEP (IN HOURS)
8 ERR .............. ACTUAL POSITION ERROR (TRUE-PREDICTED)

G ............. KALMAN GAIN
tiO o .. MEASUREMENT MATRIX
11 NTHETA1 ,NTHETA2. .NOISY BEARINGS FROM SENSORS I AND 2 TO TARGET
12 PNZ ...... oooo. o.oMEASURED X.Y POSITION (NOISY)

13 iP ..... . o o o o o . o o . ERRORCOVAAIANCEMATRIX
, APHI. .............. STATE TRANSITION MATRIXr15 Q .............. STATE EXCITATION COVARIANCE MATRIX

L16 P R..... . ....... MEASUREMENT NOISE COVARIANCE MATRIX
17 ARNGPCERR........ . PERCENT RANGE ERROR
18 R2D ...... . . .. . .. . RADIANS TO DEGREES
19 A TKM.............. TIME VECTOR (IN MINUTES)
21 A VX . o . . .oo. TRUE TARGET VELOCITIES IN X AND Y DIRECTIONS

21~ ~ AV VY. ... o. .o.oSENSOR I1AND SENSOR 2 VELOCITIES22 gXHA±... o ... o o . STATE ESTIMATE
.23 AXTK,YTK. o . o . . o. . oVECTORS OF TRUE TARGET POSITIONS

t2 A XIK,Y2K. . . o . o . VECTORS OF TRUE SENSOR POSITIONS
~25 A

27 A
28 A INITIAL CONDITION INPUTS:
129 A
30 p ' INPUT DESIRED RANDOM LINK:'

.31 RLSAVE4-RL 265067500
S32 p
33 ' HOW MANY ITERATIONS ARE TO BE RUN (K)?'
34 K O
35 A
36 ' ENTER TRUE TARGET PARAMETERS: XTO, VXF, VXS, YTO, VYF, VYS'

.37 TRUESTATE O
30! XTO TRUESTATEEI)
3! VX+TRUESTATE[2 3)40 YTO4-TRUESTATE54

,41 1VY'-TRUESTATE [5 6]
43' WHEN IS THE TARGET GOING TO TURN (WHICH ITERATION NO.):'

44 TURN Q
*45] A
46 'NEXT ENTER SENSOR I AND SENSOR 2 POSITION AND VELOCITY
47) 'DATA AS X1OVX1 ,Y20,VY2'
48 SENSPOS+O

X1O SENSPOS El]
50 VX14 SENSPOS [2]
5 Y20 SENSPOS 3

VY2 -SENSPOS 4

S5 TIME STEP TO BE USED (DT, IN SECONDS)?'
56* DT O

p57. DTS4DT58., DT DT+3600

S0 'NO. OF POINTS TO INCLUDE IN THE REGRESSION:'
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6 61] iNRP'-O
62 H 'NOW ENTER ALL A PRIORI ESTIMATES AND MATRICES:'

[66] 'INITIAL GUESS XH'T (FOUR ELEMENTS MUST BE ENTERED):'
"67" XHAT+D

6868 XHAI- 4 1 pXHAT
[69] APXHAT+XNAT
[70 '[717[ 72 ] ' INITIAL P MATRIX DIAGONAL ELEMENTS (FOUR ENTRIES):'

73] DIAGONAL+O
-7"3 P+ 40 (( 14)o.X4) 4 4pDIAGONAL
[75: '[76-1[77] o ' ENTER OFF-DIAGONAL POSITIONAL AND VELOCITY COVARIANCES (2 INPUTS):'

[781 OFFDIAG+ 00
[79] P[1;3]4P[3;1 JOFFDIAG[1]
C8 0"' P[2;L4+P[4;2 2OFFDIAG[2
[81 PSAVE P
821 P

[832 'INITIAL R MATRIX (4 NUMBERS IN THE ORDER UL, UR, LL, LR):?
[84 R*-C
[85] RSAVE+R 2 2 PR

87] n SET UP SOME VECTORS NEEDED TO GENERATE THE Q MATRIX.
38] PC+ ((01 .+ (4x 360g ))j*2

[89]A Fl+12 1 2 2 4 2 4F90 gF1*-Fl,-Fl
^fl PF244 2 2 44 10p2
923 RF3+(8o4),8+F2
93] ,FF44+ 4 3 4 3 3 2 3 2

[9& S) 4+FlJF4
95] m
961 ' t

6 97 'ENTER MAX BEARING ERROR IN DEG. FOR THETA I AND THETA2 (>2 INPUTS):'
L98 B6+0
[99] A-100- **************************************************************

L1011
[12] A INITIALIZED STORAGE VECTORS FOR GRAPHING PURPOSES ONLY103] q
104 GVSTORE QGSTORE QVERRSTORE QERRSTOREeQRESIDERRSTORE (2,K+I ) P0
1052 QRNGPCERRSTORE QMSAVE (1,K+l pO

[106A
[107 n THE FOLLOWING OUTER LOOP IS FOR GRAPHING THREE SETS OF SENSOR BEARING
;108 A ERRORS ON THE SAME GRAPH. THE TRACKING ALGORITHM IS IN EFFECT, BEING

109 P RUN THREE TIMES, WITH EACH RUN USING A DIFFERENT PAIR OF SENSOR
[110 ] BEARING ERRORS.
[111 A
112 MAINLOOP4-1
[ 113 TOP: BRGERR B6 [(1+2 xMAINLOOP), 2 xMAINLOOPJ
[114 P PSAVE
115 R4-RSAVEF116 XHAT*APXHAT
117 A14BRGERR[1)
118- A2+BRGERRi[2]
1193 A
120 PSET UP Q MATRIX INITIALLY TO BE A 4X4 MATRIX OF ZEROS.

[121] Q+4 44PO1221 @ q #
122

;124
125 THE PURPOSE OF THIS PROGRAM SEGMENT IS TO

i126 2 ESTABLISH TRUE TARGET TRACK (WHICH INCLUDES TWO LEGS) AND SET UP
127 SENSOR 1 AND SENSOR 2 TRACKS. YOISE-FREE BEARINGS FROM EACH SENSOR

[1281 A TO THE TARGET ARE COMPUTED. NOISY ZERO-MEAN NORMALLY DISTRIBUTED
12G a BEARING ERRORS ARE GENERATED AND THEN ADDED TO THE NOISE-FREE
130] A BEARINGS. FRORZ IHE INTERSECTION OF THESE NOISY LOB'S, THE NOISY
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131] n IX PY POSITION OF THE TARGET IS COMPUTED AND STORED FOR LATER USE
32AN H TRACKING FILTER AS THE TARGET' S 'MEASURED' POSITION FOR

133 n THE KTH TIME ITERATION.
i341 A
135 a SET UP SOME INITIAL CALCULATIONS:

L136 TK+'DTxO -iK
[137 T KMe-tKxdO
r138 JA
S139 XTKF4-XZ'0+VXC1J xDTxO iTURN
L1401i XTKS4-( 1+XTKF)+VXr.21 xDlxi(K-TURN)
F 141]1 X2k-XTKFXTES
!14~2 YTA'F+YZQ+VY~lJ xDTxO xTURN
r1 43 YT'S-( 1+YTA'F ) iVYC21xDTxt(K-TURN)

14'4 YTK-4-YTKF,YTKS
p14 6 XlK+X1O+VX~xTK

1-47 Y2K4-Y20+VY2 xTK

15n9 R2D4-180+olLVX*-XlK=XTK
S151 LVY,*Y2K=YTK
152 J
153]f THETA1Ke ( (X1K<XTK )xol)+-3o (YTK. (XIK-XTK+LVX)

15JTHETA2K+-((Y2K<YTK xol )+ 3o (XTK+ (72K-YTK+LVY)
~156' TAIK-L~05oj LXxHT
~1571 TH"24H~05o LVX xTHETA1K
158 A
1159 A CONTINUE WITH CALCULATIONS:

161 J DATAPOINTS4- (2 NRP~h 0
1162 JRNGPCERRSTORE2SAVE-O
Li6 3]l RESIDERRSTORE-NZ4- 2 1 oC
i6'4 JGVSTORE4-VERRSTORE4-ERRSTORE.BSTORE.GSTOREe-NZFIX+ (2 ,R+ ) p0

1165 JA
r 661 XHATSTORE+- 4 1 p0
167J" PSTORE44 4pO
168 i A
.169 1H4- 2 4 p 1 0 0 0 0 0 1 0
17C1 PHI4+UL4)0.=lL&
L17 1~ PHIL 1;21-DT
1721 PHIL 3;L4j4-DT

:1731 AACCEL,-0 .5 xD T *2
17 4 AGAM4- 4 2 pACCEL, 0 ,DT, 0 ,0 ,ACCEL, 0 ,DT

S178A
179. A START MA IN LOOP:

S1821 a
183] A
184] LOOP:G4-P+.x(OH)+.xMR+H+.xP+.xOH

~187 Aq IKALMAN GAIN:'
188 A

81%- GVSTORE E 2 N]4+G[2;1
191GSORE Ei 1;APG L1:1192GSTR2 ;Ni4-Gh;2]

S19~4 A
195 JA
196 Pe-(I-G+.xH)+.xP
i97 PS ,TORE+PSTORE,E0.5x+IcN]P
P19~ A

,2CZI A'IUPDATED P: 1

58

I~%



'20 1" mP
2021~ ZK4- 2 1 pXTY[N] ,YTK lN3
S203] A ITRUE LARGETFPOSITION'
.2043] AZK
:2 05] '1
[20-6 -- THE NEXT SECTION GENERATES) 2 NORMAL BEARING ERRORS.
;2071 p
.M208] U-(?2c10*10 )+10*1C
L 20 9] SSQ4-( 2 xeU:1 1 )*C..5
E210] SP.lA1* 2Dx1.96)
',11- SPF2'-A2+ (?2Dxl.96)
r212' PSTO-r1;V]+BE1--SPR~xSSQ x2o(UE2]x2 xol)
£213 IS0R !*N]-BE2*-SPR2xSS xic (U[2]x2 xo1
112143 A
2151 tITHETA 14THETAlK;NJ +BE1
216.. lJTHETA2+THETA2'iJ +BE2

1,217; p
7216 SA1.1oNTHETA1
[219j C714-2oNTHEZA1
[220-, SA2-loNTHETA2
C 22 11 CA 2 -2oNT.IETA 2
2221 )-2(THEA1+NTHETA2)

t£223: o
:224 , VZ FIX[C1 ; 1*4NZr 1je((Y2KCN~xSA2xCA1 )- (XlK'UN~xSA~xSA2 ))+D
;225 NZ,1IX[2:-N-NZi2]'t-((X1K[N] xSAlxCA2 )- (2K[N]xSA2xSA1 ))+D
L 22 6~ AN r SEI;N All-XTK ['N -NZFIX L1;NjS227 PR6.OSE!2-N]4-YTK ENj-NZFIX t2;N]
228 o I: IRUE T X, Y POSIT MINUS NOISY X, YPOSIT'
.229 a NOISE[;Nl

;230A
*231 A
232a
t233J RESIDERR4-NZ-H+. xXHAT
'234 XHA2'.XHIT+G+. xRESIDERR
*2351 a

23-XHATSTORE.XHATSTORE,XHAT

239 RESIDERRSTORE+-RESIDERRSTORE ,RESIDERR

t241 P DATAPOINTS-DATAPOINTS ,NZ
~242 PEATAPOINTS.DATA~POINTS, 1 0 1 0 'XH'AT

21 DATAUSEe-(2 -NRP)+DATAPOINTS
;2L-.5] nSUMX4 + / DA TA JSEr 1;],

27 ioSfJX2../DATAUSt 1 J *2
2481 A5LgXY-+/DATAUSEl1. xDATAUSEC21]

6 2' L.: DENOMrNATOR.C(NRPx.[JUMX2 )-SUMX*~
62OMA-((NRPxSUMXY):SUMXxSUMY ).DENOMINATOR

;25~2j APSAVE4-SAVE,MDEG

125- /ERRSTORECI ;NJ *VX'1+N'TURN+1 -XHAT [2;
L2= VERRSTOREE 2;N]eVY!1+NTURN+j-XHAT'4; J

F-E)9 RRUEi-(+, Z~xZK)*0.5
F,7 RX--1 C1 0 fXHAT
258 RHAT*-(+,RXxRX)*0.E
25s RNGPCERP.1 00 x (RTRUE ) xRTRUE-RHAT
z260 RNGPCA'RRSTORE-RNGPCERRS TORE,*RNGPCERR

" 263 a I UPDATED XHAT:~
*2641 a XHAT
265j ERR-ZK- 2 1 p,XHAT C1 3 ;]

6266~ a 'ERROR VECTOR:'
L26

7
g ERRSTORE'1;N74+ERRr~i; ;

%268! ERRSTORE!2;N:--1 -ERR,2:.,~269) AERR
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271[272 P4-Q+PHI+. xP+. xOPHI
273 a
274~ A
275~ A IPREDICTED P:'

S278. A
279 XHAT4-PfiI+. xXHAT
280 A
281 m
282 p I PREDICTED XRAT:'
283 A XHATE28'4 A
285 PX2.XHAT 2;)

S286 AX4+-XHAT 4;]
287 mXA+X4,XL4,X2,X2,X4 .X4,X2,X2,X2,X2,X2,X2 X2,X2 X2,X2
'288 AXB+-X4 XL4,X4,XL4,XL,,:X4 X4,X4 ,X4,X4,X2,X2,X4,X4,X2,X2E289 A QTERM§*4-CxFlxXAxXBxDT§*F4
290 A Q+4 4 qQTERMS
291 PCALCULATE TERMS IN THE RMA TRIX:
292 A
1293 ' Rl.(XHAT[3;J*2)+(XHATE! ]-X1KEN] )*2
129 S1G12-Rlx(3oAl+R,2Dx1.96 *21295 R2 HATE1;J*2)+(XHAT3-Y2K[NJ )*2

H71SIG224-R2x(3oA2+R2Dxl.96)*2
~298 D14-D*2
S299 UL. ((SIG12xSA2*2 )+( SIG22xCA1*2 *D1
300 LI?. ((SIG12xCA2*2 )+(SIG22xSAI*2 J) D1
301 CROSS.--((SIG12xSA2xCA2)+(SIG22xSA~xCA1))*D1
302 R4-2 2 pUL CROSS, CROSS, LR
303 RRMATRIk:'I
1304 AR

t306A
307 A 'ITERATION NO. ',w(N 1)

L 3 0 8 a 1
S309 N.N+1
310 * (N<K+l1/LOOP
L3112
3 3
314 LQM.-0.5x1+1<MAINLOOP
315 QGVSTORE*'-QGVSTORE, ELQMJ GVSTORE
316 QGSTORE4-QGSTOREA[LQM] GSTORE
317 QVERRSTORE4-QVE kSRE ELQM) VERRSTORE
13198 REERRSORE4-QRES±DRE MRSTORE LMREIESOE

4318 REERRSTORE4-REiRSTORE [3 RSIERRSTORE
~3201 NGPCERRSTORE-(1 PRNGPCERRSTOkE )oRNGPCERRSTORE

* 322 PMSAVEe(1 PMSAVE),oMSA VE
323 PQMSAVE.QkSAVE, [ QM] MSAVE

3 2' MAINLOOP4MAINLOOP+1325 ORL4-RLSAVE
1326 -(MAINLCOP50. 5xpB6 )/TOP
3271 1 COMPLETE.'
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